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Gaussian process evaluation
In practice, evaluating a Gaussian process (GP) reduces to a set of matrix operations whose derivation is given by Rasmussen
et al.1 in section 2.7. Consider N previous experiments have been performed with parameter sets X = (X1, · · ·XN) (each
X j = (x1, j, · · ·xM, j)), measured costs C = (C1, · · · ,CN) and uncertainties U = (U1, · · · ,UN). We refer to the set of this data as
our observations O = (X ,C ,U ). We fit a GP to these observations with constant function offset β and covariance defined by
a squared exponential correlation function K(Xp,Xq,H) = e−∑

M
j=1(x j,p−x j,q)

2/h2
j where H = (h1, · · · ,hM) are the hyperparameters

of the model.
The mean function and variance of the functions are:

µĈ (X |O,H) =β + r(X)T
γ (1)

σ
2
Ĉ
(X |O,H) =σ

2
C (1− r(X)T R−1r(X)+( jT R−1 j)−1( jT R−1r(X)−1)2) (2)

where σ2
C is the variance of the costs C , and we define the constant β ≡ ( jT R−1 j)−1 jT R−1Y , the N×1 vector r(X) such that

{r(X)}1,i = K(X ,Xi,H), the N×1 vector γ ≡ R−1(Y − jβ ), the N×1 vector Y of the costs defined by {Y}1,i =Ci, the N×1
vector { j}1,i = 1, the N×N matrix R defined as {R}i, j = K(Xi,X j,H)+δi, jU2

i , and where δi, j is the Kronecker delta function.
{·}i, j is our notation for the ith row and jth column of a matrix or vector.

When finding the most likely hyperparameters we maximize the likelihood function. The likelihood L(H|O) is defined as
the probability of the costs given the parameters, uncertainties and hyperparameters: P(C |X ,U ,H), the log of which is:

logP(C |X ,U ,H) =
1
2
(− log |R|− log jT R−1 j− (N−1) log2π−Y T (R−1− ( jT R−1 j)−1R−1 j jT R−1)Y ) (3)

Parameterizations of evaporation ramps
The simple parameterization of the evaporation ramps is

Rs(yi,y f , t f ) = yi +
(
y f − yi

) t
t f

(4)

where yi and y f specify the start and end amplitudes of the ramps and t f specifies the length in time.
The complex parameterization an extension of the simple form:

Rc(yi,y f ,A1,A2,A3, t f ) =yi +
(
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) t
t f
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where A1, A2 and A3 correspond to the 3rd, 4th and 5th order polynomial terms respectively with each polynomial having
evenly spaced roots between t = 0 and t = t f . As with the simple parametrization t f specifies the end of the ramps in time.

In each of the three ramps being optimized, the parameters yi, y f , A1, A2, A3 are independent. However, the final time t f is
common.

Results of the optimization process
Figure 1 shows the optimal evaporation ramps for each of the five optimization runs discussed in the paper. It can be seen that
the lower parameter searches (ML7p, ML6p and NM7p) converged to similar shaped ramps, whereas the higher dimensional
searches found quite different optima. Table 1 outlines the optimal values for each parameter found in the 16 parameter MLOO
run.
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Figure 1. Optimal evaporation ramps for each of the five optimization runs presented in the main manuscript. The three
separate plots represent each of the three experimental channels with each of the coloured lines corresponding to one of the five
optimization runs. The low parameter searches (ML7p, ML6p and NM7p) consist of the simple parameterization which allows
for linear evaporation ramps, whereas the higher parameter searches (ML16p, NM16p) use the complex parameterization
allowing higher order terms to appear as well as allowing the total time of the evaporation ramps to be optimized.

channel
parameter 1 2 3

yi 5.39066 2. 2.265
y f 1.17105 2. 0.623434
A1 −2.68112×10−6 −0.0000924388 −0.000363626
A2 0.317441 −0.0629076 0.00674956
A3 −0.0020399 −0.00344333 0.

t f 4.041276

Table 1. Optimal parameter values for the 16 parameter machine learning optimization run.
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